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Cleome viscosa Linné (syn. C. 1cosandra Linnd) (Capparidaceae) 1s a common weed found
throughout the tropical regions of the world. In India, 1ts seeds are utilized as a remedy for
infantile convulsions, as an anthelmintic and as a counterirritant in chronic painful joints.
Systematic fractionation and chromatographic rescluticon of the defatted seeds of C. viscosa
furnished a pale yellow crystalline substance which has been named as cleomiscosin A,

Cleomiscosin A (C-A), m.p. 247-249°, was shown to have the composition C., H,_ 0, (MS m/e

+ .
2ILE _NO0OD M Tn asornomant wit +hh e + J'3rv NMD arnactryim 1ndicatad +ha mrccanos ¥ Froant
386.0092, M )., in agrcement with this, the C NMR spectrum indicatcd the proesence of twenty

carbons which were further classified as follows: scven aliphatic carbons (CH.-0 X 2, —CH2—O X1,

PCH-0 X 2, —CH=CH-x1), twelve aromatic carbons (CHx4, CX2, ¢C-0%6) and one carbonyl carbon.

Since C-A has a number of aromatic carbons of the C-0O type, exhibited a strong IR bandl at 3500
cm_l and gave a positive phosphomolybdic acid test for phenols, 1t was treated with diethyl sul-
fate ain the presence of potassium carbonate to yield the monoethyl ether (II), m.p. 208-210°,
C22H2208 (C, 63.48; H, 5.11%, MS m/e 414, M+) which did not respond to tests for phenols. The
ether (II) still disclosed a hydroxyl band at 3450 cm_l in the IR spectrum and, therefore, 1t was
acetylated with acetic anhydride 1n triethylamine to give the monoethyl ether monoacetate (III),
m.p. l62-164°, C24H24O9 (C, 63.10, H, 5.85%, MS m/e 456, M+). C-A also gave on acetylation with

+
acetic anhydride 1in triethylamine the diacetate (IV), m.p. 174-177°, C>4H22010 (MS m/e 470, M ).

The IR spectra of the deravatives (III and IV) displayed no more hydroxyl band, indicating that

C-A contains one phenolic and one alcoholic hydroxyl group.

The presence of a coumarin moiety was revealed from the UV {(maximum at 325 nm with humps at
~1 1
288 and 232 nm 1n EtOH), IR (bands at 1720 and 1620 cm ~) and H NMR (two 1H doublets at & 6.30
and 7.62 (J 10 Hz) for H-3 and H-4) sgpectra of the ether (II). The existence of a ¢oumarin moi-

ety, two methoxyls, a phenolic and an alcoholic hydroxyl thus accounted for six of the eight oxy-
gen atoms present in the molecule and the remailning two oxygens were thus considered to consti-
tute oxide linkages. Additional evidence 1in support of the presence of the coumarin moiety was
secured from the mass spectra of C-A and 1ts derivative (III) which showed a common fragment peak

at m/e 208 due to the cation C (A) . These data further showed that the coumarin nucleus
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bears one methoxyl and two O-substituted groups in the arcmatic ring. In conformity with this,
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CH;Q - P —T+ the lH NMR spectrum of the diacetate (IV) displayed a 1H singlet at &
“a ~ ) 6.54 attributable to an 1solated hydrogen. The finding of NOE's betwe-
HO en the H-4 signal at § 7.58 and the above singlet at § 6.54 (21%) and
HO o 0 between the same singlet at § 6.54 and the methoxyl hydrogen signal at
A § 3.88 (31%) established the location of the hydrogen 1in question at
C-5, the methoxyl at C-6 and consequently the remaining oxide linkages at C-7 and C-8. This was

further verified by comparison of the observed chemical shifts of the 1 C NMR signals for C-2--
C-10 1n C-A and 1ts derivatives (TT and IV) with the predicted shifts of £-2—C-10 in a 6,7,8-tri-
O-alkylated coumarin described below. assignments of the observed shifts were first confirmed
by the presence of the 13C—lH spiln couplings between the C-7 signal and the H-5 signal, between
the C-9 signal and the H-5 signal and between the C-6 signal and the methoxyl hydrogen signal.
The predicted shifts of a 6,7,8-trihydroxycoumarin waere calculated from the shieldings of 6,7-di-
hydroxycoumarin and the additive substituent parameters for the additional hydroxyl at C-8.

Since 1n coumarins, conversion of hydroxyls into O-alkyls 1s known to cause no significant
changes in the chemical shlfts,2 the predicted shifts thus deduced were compared with the chserv-

ed shifts, showing that both the sets of values were coincident (Table I).

12
As was revealed by the previcus ~~C NMR data, there was another phenyl group in the mole-

cule. In the lH NMR spectra of the derivatives (III and TV), signals originating from three
hydrogens in the phenyl group in guestion were visible, indicating that the phenyl was disubsti=-
tuted. Although the three hydrogens appeared as a singlet at the same position § 6.90 in the
spectrum of the ether acetate (III), they occurred separately at § 6.99 (doublet, J 8 Hz), 7.07
{doublet, J 8 Hz) and 7.02 (singlet) 1n an ABC pattern 1n that of the diacetate (IV). This fact

pointed to the three possibilities, 2,4~, 2,5- and 3,4-dioxygenated features, for the substitu-
tion pattern of the phenyl group. That one of the two oxygen substituents was a methoxyl and
the other a hydroxyl was confirmed by the finding that the fragment peak at m/e 137 due to the

cation B (R=H) 1in the mass spectrum of C-A shifted to m/e 165 (B, R=C2H5) in that

of the ether (II). It was reported that the three lH NMR signals appeared at § /?:::R\
+
RO ‘ B
OCH,

6,3 (2H) and 6.9 (1H) in 2,4-dihydroxy-l-propylbenzene, at § 6.50 (3H) in 2,5-di1-
hydroxy-1l-methylbenzene (DMSO—d6+CDCl3) and at 8 €.65 (3H) ain 3,4-dihydroxy-1-

methylbenzene.3 Thus the observed resonances for the three hydrogens at § 6.90

1in the ether acetate (ITII) suggested the 3,4-dioxygenated pattern for the phenyl group. In the
furthex examination of the substitution pattern of the phenyl group, the observed chemical shifts

of the six 13C NMR signals for C-1'=C-6' 1in the phenyl group were found to be consistent with the

calculated shifts of C-1-C-§ in 2,5- and 3,4-dioxygcenated-l-methylbenzenes but not with those of
2,4-dioxygenated-l-methylbenzenes (Table I and II). The predicated resonances for C-1'—C-6' 1in

the diacetate (IV) were then calculated by adding the acetylation effects on the carbon reso-

nances in C—A.4 Comparison of the predicted resonances with the observed ones for C-1'-L-6' 1n
the acetate (IV) indicated a fair 1dentity for the two sets of data 1f C-A were a 4-hydroxy-3-me-
thoxy derivative and not i1f 1t were a 3-hydroxy-4-methony, 2-hydroxy-5-methoxy or 5-hydroxy-2-me-
thoxy derivative (Table III). A discrepancy still existed for the resonances of the two carbons
bearing oxygen functions and thils may be attributed to the vicinal position of the twc carbons 1in
question. The 4-hydroxy-3-methoxy arrangement was further verified by the following fact: 1) an

NOE was found between the singlet for the methoxyl hydrogens at § 3,84 and the singlet for the
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Table I. Carbon-13 shieldings in cleomiscosin A and related substances (8)
cleomiscosin A ether (II) diacetate (IV) &,7,8-0H ephedradine B
(CgDgN) (CgDgN) * (CDC1q) ** coumarin? (cspsNy 4
C=2 160.8 s 160.7 s 160.4 = 161.4
c-3 113.6 & 113.3 @& 114.4 & 112.0
c-4 144,5 4 144.5 a 143.5 4 144.5
C-5 101.1 a 101.0 4 100.5 & 103.5
c-6 146.3 s 146.3 s 145.8 s 143.5
c-7 138 4 s 138.2 s 136.9 s 137.5
C-8 133,0 s 132.0 s 133.5 s 132.0
c-9 139.3 s 139.2 s 140.8 s 139.1
Cc-~10 111 8 s 112.2 s 111.9 s 112.0
c-1" 127 5 s 129.1 s 131.7 s 130.8 s
c-2" 112.3 4 111.6 4 111.5 4 111.1 4
c-3" 150.0 = 150.1 s 151.7 s 147.9 s
c-4" 149.0 s 149.6 s 138.,8 s 145.9 s
c-5" 116.6 4 113 8 4 123.3 4 115.7 4
c-6' 121.7 4 121.0 4 119.9 4 120.5 4
c-7"' 79 9 d 79.7 4 76.7 4
c-8" 77.5 d 77.3 4d 751 4
c-9' 60,7 t 60.6 t 62.4 t
OCH3 55.8 g 55.7 q 56.0 g
OCHy 56.2 g 56.1 g 56.3 q
*64.4 t, 14 9 g for OCH,CHi **168.5 s, 170.2 v, 20.6 g, 20.6 g for two COCH3's
Table II. Carkbon-~13 shieldings 1n the hydroxy-methoxy-methylbenzenes (&)
c-1 c-2 c-3 c-4 C=5 C=6
2-hydroxy-4-methoxy-l-methylbenzene (1) 117.0 157.1 101.3 158.4 106.7 131.6
4-hydroxy-2Z-methoxy-1l-methylbenzene (2) 115.7 162.0 101.3 153.5 108.0 131.6
2-hydroxy-5-methoxy-l-methylbenzene (3) 125,7 148.4 116.7 112.6 152.5 116.2
S-hydroxy-2-methoxy~1l-methylbenzene (4) 124 .4 153 3 115.4 113.9 147.9 117.5
3-hydroxy~4-methoxy-l-methylbenzene (5) 131.1 117.5% 140,9 144.3 115.4 122.,9
4-hydroxy-3~-methoxy-1-methylbenzene (&) 131.1 116,2 147 1 138.1 116.7 122.9
Table III. Carbon-13 shieldings of the phenyl side chain in cleomiscosin A and 1ts acetate
C-1" c-2' C-3" c=4" c=-5" c-6'
1in the case of 2-hydroxy-5-methoxy derivative
cleomiscosin A {(obs) 127,5 14¢.0 116.6 112.3 150.0 121.7
the diacetate (calc) 137.8 142.7 126.9 110.3 157.%9 119.7
the diacetate (cobs) 131.7 136.9 123,13 111.5 151.7 119.9
in the case of 5S5~hydroxy-Z-methoxy derivative
cleomiscosin A (obs) 127.5 150,0 116.6 112.3 149.0 121.7
the diacetate {calc) 125.5 157.9 114.6 122.6 142.7 132.0
the diacetate (obs) 131.7 151.7 111.5 119.9 136.9 123.3
in the case of 3-hydroxy-4-methoxy derivative
cleomiscosin A (obs) 127.5 116.6 149.0 150.0 112.3 121.7
the diacetate (calc) 125.5 126.9 1427 160.3 110.3 129,6
the diacetate (obs) 131.7 115.9 136.9 151.7 111.5 123.3
in the case of 4-hydroxy-3=-methoxy derivative
cleomiscosin A (obs) 127.5 112.3 150.0 149.0 116.6 121,7
the diacetate (calc) 135.4 110.3 160.3 142.7 126.9 119,7

the diacetate (obs) 131.7 111.5 151.7 136.9 123.,3 119.9
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insulated hydrogen at & 7.02, 2) the observed chemical shifts for C-1'—C-6' in C-A fitted with
those for the corresponding carbons in 4-hydroxy-3-methoxypnenyl derivatives, e.g., ephedradine
B4 (Table I) and 3) the shifts for C-3' and C-4' 1in the diacetate (IV) were 1n good agreement
with those for the corresponding carbons in ephedradine B triacetate (& 151.0 and 139.84).

1
Inspection of the "H NMR spectrum of the ether (II) with the aid of double resonance experi-~

ments showed the prescnce of the part structure C. The H~9' signal exhibited a downfield shaft
o 0 by 0.2 ppm when the ether (II) was acetylated, indicating that the C-9°
!gv !8‘ T7v methylene bears a hydroxyl and conseguently the C-7' and C-8' methines
CHy—CH—CH—nm
carry oxide linkages. Hence, the above 4-hydroxy-3-methoxyphenyl system
C BE=quaternary C
e b 1s Lo be attached to the C-7' methine of the part structure € to build up
the C6~C3 unit. Such an arrangement 15 consistent with the fairly deshielded line position of
the H-7' signal (8§ 5.05, 5.01 and 5.03 for the derivatives (I, III and 1IV)). The genesis of
1 2
the fragment ion (D) (m/e 180.0794 in C-A (R -R -1}, m/e 208.1075 in the ether (II) (R1=H, R2=
2
} and m/e 250 in the ether acetate (III} (Rl=COCH , R C H )) by
Pen 1+ 2 5 3
RloCH2 ! retro Diels-Alder type fission confirmed this assumption. C-A was thus
represented by formula I, though an alternative structure by interchange
I N ot substituents at C-7' and C-8' 1s cqually probable. However, the corw
/// rectness of the structure I was ascertained
OCH3
b _t N X = . 13_‘ 1. M
20 by the observation of the C-"1 spin cou- gl
R
plings between the C-7 signal at § 136.9 and
the H-8' signal at § ca. 4.1 and between the C-8 signal at & 133,5 O

and the H-7' signal at § 5.03 1in the diacetate (IV).

The coupling constant between the H-7' and H-8' signals in the Hogﬂz 7
derivatives (II, IIT and IV) was 8 Hz, demonstrating that the two iy
hydrogens are trans-oriented. The relative stereostructure I was G] Xy
thus deduced for C-a. However, in view of the optical inactivity 5" ' 3 ocH
of the deravatives (II and III), C-A was concluded to be racemic. ;i 3 .
C-A possesses a novel skeleton in which a CB_C3 unit is linked e B
with a coumarin nucleus through a dioxane bridge. It 15 the first member of a new class of com-

pounds which may be termed as coumarino-lignans.
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Addendum A. G. R. Nair (Ind. J. Chem., 17B, 438 (1979)) has qulte recently reported the isola-

tion of cleosandrin from the seeds of C. icosandra and 1ts structure has been proposed as 7-0-
[2-hydroxy—2, 5-dimothoxy-4—- (1'~c1s5~epoxy—-3'-hydroxypropyl) phenyl]lcoumarin. From the reported

L OyGroXy=35, 2—G1lRCTNRCKY C1l5—epOXxY nyaroxypropyl)phnenyl ol

physical constants, cleosandrin appears to be 1dentical with our cleomiscosin A but the Nair's
structure is untenable with the data we have obtained.
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